首页> 外文OA文献 >Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models
【2h】

Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models

机译:晶格密度泛函理论的相互作用能函数:   应用于一维,二维和三维Hubbard模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Hubbard model is investigated in the framework of lattice densityfunctional theory (LDFT). The single-particle density matrix $\gamma_{ij}$ withrespect the lattice sites is considered as the basic variable of the many-bodyproblem. A new approximation to the interaction-energy functional $W[\gamma]$is proposed which is based on its scaling properties and which recovers exactlythe limit of strong electron correlations at half-band filling. In this way, amore accurate description of $W$ is obtained throughout the domain ofrepresentability of $\gamma_{ij}$, including the crossover from weak to strongcorrelations. As examples of applications results are given for theground-state energy, charge-excitation gap, and charge susceptibility of theHubbard model in one-, two-, and three-dimensional lattices. The performance ofthe method is demonstrated by comparison with available exact solutions, withnumerical calculations, and with LDFT using a simpler dimer ansatz for $W$.Goals and limitations of the different approximations are discussed.
机译:在晶格密度泛函理论(LDFT)的框架下研究了Hubbard模型。关于晶格位点的单粒子密度矩阵$ \ gamma_ {ij} $被认为是多体问题的基本变量。提出了一种对相互作用能函数$ Wγ的新的近似,其基于其缩放性质并且精确地恢复了半带填充时强电子相关性的极限。这样,在$ \ gamma_ {ij} $的可表示性整个域(包括从弱相关到强相关的交叉)中,可以获得$ W $的更准确描述。作为应用示例,给出了在一维,二维和三维晶格中哈伯德模型的基态能量,电荷激发间隙和电荷磁化率的结果。通过与可用的精确解进行比较,通过数值计算,以及使用更简单的二聚体ansatz的LDFT($ W $),证明了该方法的性能。并讨论了不同近似值的目的和局限性。

著录项

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号